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Introduction

• The purpose of this paper is to present a local support-

operators diffusion discretization for arbitrary 3-D hex-

ahedral meshes.

• We use the standard finite-element definition for hexa-

hedra [1].

• The method that we present is a generalization of a

similar scheme for 2-D r− z quadrilateral meshes that

was developed by Morel, Roberts, and Shashkov [2].

• We assume a logically-rectangular mesh in our deriva-

tion for convenience, but the scheme can also be applied

to unstructured meshes.
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Introduction (Cont.)

• The diffusion equation that we seek to solve can be

expressed in the following general form:

∂φ

∂t
−

−→
∇ ·D

−→
∇ φ = Q , (1)

where t denotes the time variable, φ denotes a scalar

function that we refer to as the intensity, D denotes the

diffusion coefficient, and Q denotes the source or driv-

ing function. It is sometimes useful to express Eq. (1)

in terms of a vector function,
−→
F , that we refer to as

the flux:

−→
F = −D

−→
∇ φ .
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Properties of the Scheme

1. It is a cell-centered discretization for arbitrary hexa-

hedral meshes but has both cell-center and face-center

intensities.

2. It gives second-order convergence of the intensity on

both smooth and non-smooth meshes both with and

without material discontinuities.

3. It generates a sparse SPD coefficient matrix.

4. It is equivalent to the standard 7-point cell-center dif-

fusion discretization scheme when the mesh is orthog-

onal.
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The Support-Operators Method

We next describe the support-operators method. It is conve-

nient at this point to define a flux operator given by −D
−→
∇ .

The diffusion operator of interest is given by the product of

the divergence operator and the flux operator: −
−→
∇ ·D

−→
∇ .

The support-operator method is based upon the following

three facts:

• Given appropriately defined scalar and vector inner

products, the divergence and flux operators are adjoint

to one another.

• The adjoint of an operator varies with the definition

of its associated inner products, but is unique for fixed

inner products.

• The product of an operator and its adjoint is a self-

adjoint positive-definite operator.



Page 7 of 36

The Support-Operators Method (Cont.)

The adjoint relationship between the flux and divergence

operators is embodied in the following integral identity:

∮

∂V
φ
−→
H ·

−→
n dA −

∫

V
D−1−→

H · D
−→
∇ φ dV =

∫

V
φ
−→
∇ ·

−→
H dV ,

where φ is an arbitrary scalar function,
−→
H is an arbitrary

vector function, V denotes a volume, ∂V denotes its sur-

face, and
−→
n denotes the outward-directed unit normal as-

sociated with that surface.
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The Support-Operators Method (Cont.)

Our support-operator method can be described in the sim-

plest terms as follows:

1. Define discrete scalar and vector spaces to be used in

a discretization of the integral identity.

2. Fully discretize all but the flux operator in the identity

over a single arbitrary cell. The flux operator is left

in the general form of a discrete vector as defined in

Step 1.

3. Solve for the discrete flux operator (i.e., for its vec-

tor components) on a single arbitrary cell by requiring

that the discrete version of the identity hold for all el-

ements of the discrete scalar and vector spaces defined

in Step 1.
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The Support-Operators Method (Cont.)

4. Obtain the interior-mesh discretization of the identity

by connecting adjacent mesh cells in such a way as to

ensure that the identity is satisfied over the whole grid.

This simply amounts to enforcing continuity of inten-

sity and normal-component flux at the cell interfaces.

5. Change the flux operator at those cell faces on the ex-

terior mesh boundary so as to satisfy the appropriate

boundary conditions.

6. Combine the global divergence matrix and the global

flux matrix to obtain the global diffusion matrix.
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Derivation of the Discretization

• We begin by defining our mesh indexing.

• We use both global and local indexing.

• Local indices enable us to uniquely define certain quan-

tities that are associated with a vertex or face center

and a cell.

• The following figures illustrate the indexing.
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Figure 1: Global indexes for four vertices associated with

cell (i, j, k).
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Figure 2: Local and global indices for three of six face

centers associated with cell (i, j, k).
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Figure 3: Local and global indices for three of six face

centers associated with cell (i, j, k).

4

3

U     - (i,  j, k+1 /2)

U

R     - (i , j+1 /2,  k)

T    - (i+1 /2,  j, k)

i

j

k

2

1
T

R



Page 14 of 36

Figure 4: Vertex shared by the Right, Top, and Up faces

having local index RTU.
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Derivation of the Discretization (Cont.)

• The intensities (scalars) are defined to exist at both cell

center: φC
i,j,k, and on the face centers: φL

i,j,k, φR
i,j,k,

φB
i,j,k, φT

i,j,k, φD
i,j,k, φU

i,j,k.

• As previously noted, the use of local indices implies

that a quantity is uniquely associated with a single cell.

For instance, unless it is otherwise stated, one should

assume that φR
i,j,k 6= φL

i+1,j,k.

• Vectors are defined in terms of face-area components

located at the face centers: fL
i,j,k, fR

i,j,k, fB
i,j,k,

fT
i,j,k,fD

i,j,k, fU
i,j,k, where fL

i,j,k denotes the dot prod-

uct of
−→
F with the outward-directed area vector lo-

cated at the center of the left face of cell i, j, k. The

other face-area components are defined analogously.
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Derivation of the Discretization (Cont.)

• The area vector is defined as the integral of the

outward-directed unit normal vector over the face, i.e.,

−→
A =

∮

−→
n dA ,

where
−→
n is a unit vector that is normal to the face at

each point on the face.

• The average outward-directed unit normal vector for

the face is defined as follows:

〈

−→
n

〉

=

−→
A

‖
−→
A ‖

,

where ‖
−→
A ‖ denotes the magnitude (standard Euclid-

ian norm) of
−→
A .



Page 17 of 36

Derivation of the Discretization (Cont.)

• This definition can be used to convert face-area flux

components to face-normal components if desired, e.g.

−→
F ·

〈

−→
n

〉

=
−→
F ·

−→
A

‖
−→
A ‖

,

=
f

‖
−→
A ‖

.

• Note that ‖
−→
A ‖ is equal to the face area only when

the face is flat.

• Interestingly, the true face areas never arise in our dis-

cretization scheme.
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Derivation of the Discretization (Cont.)

• Since it takes three components to define a full vec-

tor, the full vectors are considered to be located at the

cell vertices:
−→
F

LBD

i,j,k ,
−→
F

RBD

i,j,k ,
−→
F

LTD

i,j,k ,
−→
F

RTD

i,j,k ,

−→
F

LBU

i,j,k ,
−→
F

RBU

i,j,k ,
−→
F

LTU

i,j,k ,
−→
F

RTU

i,j,k .

• Each vertex vector is constructed using the face-area

components and area vectors associated with the three

faces that share that vertex. For instance,

−→
F

LBD

i,j,k =

fL





−→
A

B

×
−→
A

D




−→
A

L

·





−→
A

B

×
−→
A

D




+

fB





−→
A

D

×
−→
A

L




−→
A

L

·





−→
A

D

×
−→
A

L




+

fD





−→
A

L

×
−→
A

B




−→
A

D

·





−→
A

L

×
−→
A

B




.
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Derivation of the Discretization (Cont.)

• It is convenient for our purposes to define an algebraic

flux vector, F̂ , consisting of the three face-area com-

ponents associated with the physical vector,
−→
F , e.g.,

F̂LBD =
(

fL
i,j,k, fB

i,j,k, fD
i,j,k

)t
,

where a superscript “t” denotes “transpose.” The three

face-area components associated with the Right-Top-

Up vertex are illustrated in Fig.4. The algebraic flux

vectors for the other vertices are defined analogously.
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Derivation of the Discretization (Cont.)

• Our next step is to discretize the integral identity over

a single cell.

• We first discretize the surface integral:

∮

∂V
φ
−→
H ·

−→
n dA ≈

∑

f

φfhf ,

where f is the face index and the sum is taken over all

faces.

• Next we approximate the flux volumetric integral:

∫

V
−D−1−→

H · D
−→
∇ φ dV ≈

∑

v

D−1





−→
H

v

·
−→
F

v


 V v ,

where v is the vertex index, and V v denotes the volu-

metric weight associated with vertex v.
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Derivation of the Discretization (Cont.)

• The vertex volumetric weight is a free parameter in

the support-operators method. We have tried several

different weight definitions.

• The best choice appears to be one-eighth the triple

product of the three edge vectors that share the ver-

tex. For instance, the volumetric weight for the Left-

Bottom-Down vertex can be expressed as follows using

the point numbering shown in Fig.2:

V LBD =
1

8

−→
R 1,2 ×

−→
R 1,3 ·

−→
R 1,4 ,

where
−→
R i,j denotes the vector from vertex i to ver-

tex j.

• Since these weights do not necessarily sum to the total

hexahedral volume, we normalize them to do so.
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Derivation of the Discretization (Cont.)

• Although the expression given previously for the physi-

cal flux vector can be used to evaluate the dot products

in the flux volumetric integral, we find it preferable to

evaluate them in terms of the algebraic face-area flux

vectors.

• This is achieved by transforming the face-area vectors

to Cartesian vectors and then taking the dot product.

• There is a separate transformation matrix for each ver-

tex. Let us denote this matrix for the Left-Bottom-

Down vertex by ALBD. Although we cannot explicitly

define this matrix, we can explicitly define its inverse.
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Derivation of the Discretization (Cont.)

• This inverse matrix transforms Cartesian vectors to

face-area vectors:

[

ALBD
]−1 −→

H

LBD

= ĤLBD ,

where
−→
H denotes a Left-Bottom-Down Cartesian flux

vector,

−→
H = (hx, hy, hz)t ,

Ĥ denotes a Left-Bottom-Down face-area flux vector,

Ĥ =
(

hL, hB, hD
)t

,

and

[

ALBD
]−1

=









aL
x aL

y aL
z

aB
x aB

y aB
z

aD
x aD

y aD
z









,

where aL
x denotes the x-component of the area vector

associated with the left face. The remaining compo-

nents of the matrix are defined analogously.
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Derivation of the Discretization (Cont.)

• To obtain A, we numerically invert A−1.

• We can now rewrite the approximation to the flux vol-
umetric integral in terms of the face-area flux vectors

as follows:
∫

V
−D−1−→

H ·
−→
F dV ≈

∑

v

D−1
(

Ĥv · SvF̂ v
)

V v ,

where

S = AtA ,

and the dot product is taken in the usual way.

• Finally, we approximate the divergence volumetric in-

tegral:

∫

V
φ
−→
∇ ·

−→
H dV ≈ φC

∑

f

hf ,

where the sum is taken over all faces.
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Derivation of the Discretization (Cont.)

• Putting all of the pieces together, we obtain obtain the

discretized integral identity:
∑

f

φfhf +
∑

v

D−1
(

Ĥv · SvF̂ v
)

V v = φC
∑

f

hf .

• This identity must hold for all Ĥ . This requirement

uniquely determines the six face-area components of

the flux operator in terms of the cell-center and face-

center intensities. In particular the equation for a given

flux component is obtained by setting that component

to unity while setting the remaining five components

to zero. A matrix equation of the following form is

obtained:

W−1F̂ = ∆Φ̂ ,

where

F̂ =
(

fL, fR, fB, fT , fD, fU
)t

,

and

∆Φ̂ =
(

φC − φL, φC − φR, . . . , φC − φU
)t

.
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Derivation of the Discretization (Cont.)

• Numerically inverting the 6 × 6 matrix, W−1, we ob-

tain the desired expressions for the six face-area flux

components associated with the cell:

F̂ = W∆Φ̂ .

• Having enforced the discrete identity over each single

cell, we next enforce it over the entire mesh simply by

requiring continuity of the intensity and the flow at

each cell face on the mesh interior. For instance, at the

interior face (i + 1
2, j, k), requiring continuity of the

intensity yields:

φR
i,j,k = φL

i+1,j,k = φ
i+1

2
,j,k

,

while requiring continuity of the flow yields:

−fR
i,j,k − fL

i+1,j,k = 0 ,
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Derivation of the Discretization (Cont.)

• Eliminating the fluxes via the W-matrices and elimi-

nating half of the face-center intensities via the continu-

ity requirement, we are left with one intensity unknown

at each cell center, and one intensity unknown with a

unique global index at each face center.

• The equation for the intensity at the center of cell

(i, j, k) is the balance equation for cell (i, j, k):

∂φC

∂t
V +fL +fR +fB +fT +fD +fU = QCV ,

where V denotes the total cell volume, QC denotes the

cell-center inhomogeneous source, and the cell index

(i, j, k) has been supressed for simplicity.

• The equation for each face-center intensity on the mesh

interior is a continuity-of-flow equation. For instance,

the equation for φ
i+1

2
,j,k

is:

−fR
i,j,k − fL

i+1,j,k = 0 .



Page 28 of 36

Derivation of the Discretization (Cont.)

• The equation for each face-center intensities on the

outer mesh boundary is also a continuity-of-flux equa-

tion, but an extrapolated boundary condition is used

to define the face-area flux component in the ”ghost

cell” adjacent to each boundary cell. For instance,

the equation for φ1
2
,j,k

takes the following form with a

Marshak-type extrapolated boundary condition:

−fR
0,j,k − fL

1,j,k = 0 ,

where

−fR
0,j,k =

1

2
‖
−→
A ‖L

1,j,k

(

φ1
2
,j,k

− φe
1
2
,j,k

)

,

where
−→
A

L

1,j,k is the Left area vector associated with

cell (1, j, k), and φe
1
2
,j,k

is the extrapolated intensity

associated with the boundary face.

• This completes the derivation of our discretization

scheme.
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Solution of the Equations

• We use preconditioned conjugate-gradient method to

solve our equations on an unstructured hexahedral

mesh.

• The operator used for preconditioning is a 7-point pure

cell-centered discretization that results from our full

scheme when the off-diagonal components of the ma-

trices are set to zero. This is completely analogous to

the preconditioner used in [2].

• The conjugate-gradient method is also be used to solve

the preconditioning equations.
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Computational Results

• We have performed a set of calculations intended to

demonstrate that our support-operators method con-

verges with second-order accuracy for a problem with

a material discontinuity and a non-smooth mesh.

• There are two types of meshes used in all of the calcu-

lations: orthogonal and random.

• Every mesh geometrically models a unit cube, and the

outer surface of each mesh conforms exactly to the

outer surface of that cube.

• Each orthogonal mesh is composed of uniform cubic

cells having a characteristic length, lc.
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Computational Results (Cont.)

• The random meshes represent randomly distorted or-

thogonal grids. In particular, each vertex on the mesh

interior is randomly relocated within a sphere of ra-

dius r0, where r0 = 0.25lc. These random meshes are

both non-smooth and skewed, but these properties are

approximately constant independent of the mesh size.

• The problem associated with the first set of calculations

can be described as follows:

−D(z)
∂φ

∂z
= Qz2 ,

for z ∈ [0, 1], where

D(z) = D1 , for z ∈ [0, 0.5],

= D2 , for z ∈ [0.5, 1],

with an extrapolated zero intensity at z = 1 + 2D and

z = −2D, and where D1 = 1
30, D2 = 1

30, and Q = 1.
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Computational Results (Cont.)

• The exact solution to this two-material problem is:

φ = a + bz + c1z
4 , for z ∈ [0, 0.5],

= a + c2z
4 , for z ∈ [0.5, 1.0],

where

a =
Q(1 + 8D2)

12D2
, b =

Q (D2 − D1)

192D1D2
,

c1 = −
Q

12D1
, c2 = −

Q

12D2
.

• This problem is solved in 3-D on a unit cube having the

extrapolated condition on one side of the cube together

with reflecting conditions on the remaining five sides.

• We have performed several calculations for the two-

material problem with meshes of various sizes.

• Each calculation uses a mesh with an average cell width

that is half that of the preceeding calculation.
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Computational Results (Cont.)

• The relative L2 intensity error was computed for each

calculation and is plotted as a function of average cell

length in Fig.5 together with a linear fit to the loga-

rithm of the error as a function of the logarithm of the

average cell length.

• The slope of this linear function is 1.98.

• Perfect second-order convergence corresponds to a

slope of 2.0.

• Thus we conclude that our support operators diffusion

scheme converges with second-order accuracy for the

two-material problem on random meshes.
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Figure 5: Logarithmic Plot of Error Versus Cell Width
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Future Work

• We intend to investigate algebraic multigrid methods

for solving our preconditioning equations on unstruc-

tured grids.

• We intend to look at a more sophisticated 9-point pure

cell-centered preconditioner.

• We intend to investigate the performance of our scheme

on highly non-linear problems.
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